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The Lagrangian L for gravity waves of small but finite amplitude in an N-layer
stratified fluid is constructed as a function of the generalized coordinates g,(t) = {¢’,(?)}
of the N+ 1 interfaces, where the ¢!, are the Fourier coefficients of the expansion of
the interfacial displacement 7,(x, t) in a complete, orthogonal set {,,(x)}. The density
is constant in each layer, by virtue of which a velocity potential exists for that layer
(even though the full flow is rotational). The explicit expansion of L is constructed
through fourth-order in ¢, and §, through an extension of the surface-wave
formulation (Miles 1976), in which the pressure appears as the Lagrangian density
(Luke 1967). Three-dimensional progressive and standing interfacial waves in a
two-layer fluid are treated as general examples, and the two-dimensional results of
Hunt (1961) and Thorpe (1968) are recovered as explicit examples. It is shown that
the spatial resonance between surface and internal waves conjectured by Mahony &
Smith (1972) is impossible for the two-layer Boussinesq model.

The joint limit N+ oo and layer thickness {0 yields the Lagrangian density L for
a continuously stratified, Boussinesq fluid as a functional of ¢,(y) and §,(g), where
¥, the counterpart of the layer index, is a Lagrangian (rather than Eulerian)
coordinate. The coefficient C in the nonlinear dispersion relation (w/w,)* = 1+ Ck2A4*
for progressive waves of frequency w, wavenumber k¥ and amplitude A, where
w, = w, (k) for infinitesimal waves, is determined for any density profile for which the
(linear) vertical structure problem can be solved. Explicit results are given for a fluid
of finite vertical extent in which the buoyancy frequency is constant and for a
vertically unbounded fluid in which the buoyancy frequency varies like sech (g /)
and C = C(kh).

1. Introduction

The primary purpose of the following development is the construction of the
Lagrangian for gravity waves of small but finite amplitude in a stratified, inviscid
fluid with a rigid bottom, a free upper surface and a cylindrical boundary (which
includes the limiting case of a laterally unbounded fluid) as an explicit function of
an appropriate set of generalized coordinates. [Those earlier Hamiltonian formulations
for stratified low with which I am familiar — e.g. Seliger & Whitham (1968), Milder
(1982) and Henyey (1983) — are concerned primarily with the general form of the
Hamiltonian or Lagrangian functionals from which the equations of motion can be
derived through Hamilton’s principle, rather than with explicit representations in
generalized coordinates.] The extension to stratified shear flows is considered in the
following paper (Miles 1986).

Weakly nonlinear, two-dimensional wavesin a stratified fluid have been considered
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by Hunt (1961) and Thorpe (1968a, b). Hunt obtained third-order (in amplitude)
approximations to the profiles and quadratic approximations to the frequencies of
interfacial progressive waves in a two-layer fluid with rigid upper and lower
boundaries and the corresponding results for standing wavesin a vertically unbounded
fluid. Thorpe (1968¢a) extended Hunt’s results for standing waves to a two-layer fluid
of finite vertical extent and obtained second-order descriptions of both standing
(1968a) and progressive (1968b) waves in a continuously stratified fluid using the
Boussinesq approximation ; however, he did not establish the amplitude dependence
of dispersion for progressive waves. Both Hunt and Thorpe used perturbation
expansions of the type pioneered by Stokes and Levi-Civita.

Tsuji & Nagata (1973) have extended Hunt’s expansion to fifth order for
progressive waves on the interface between two vertically unbounded fluids. Holyer
(1979) has determined the wave of maximum amplitude, and Meiron & Saffman (1983)
have obtained numerical solutions for overhanging waves, for this configuration.

The present formulation follows that for surface waves in a homogeneous fluid
(Miles 1976, hereinafter referred to as I), which has proved useful for various
investigations of nonlinear stability and chaotic-motion problems (e.g. Miles
1984 a, b). The free-surface displacement in that problem may be posited in the form
7(x,t) = q,(t) ¥ ,(x), where x = (x,,x,) is the horizontal coordinate, {/,(x)} is a
complete set of normal modes, g = {g,(t)} is the corresponding set of generalized
coordinates, and the summation convention is implicit. The Lagrangian then has the

form o
L= 2pS[“mn(q) 9 qn_gsmn I qn]’ (11)

where S is the cross-sectional area of the cylinder and

Lmn = 8mn“n+a’lmnql+%“jlmnqqu+"' (1.2)

is an inertial matrix (with the dimensions of length). The truncation «,,, = 8,,, «,
implies (through Hamilton’s principle) a set of uncoupled differential equations for
the g¢,(¢), the solution of which completes the classical description (in particular,
determines the natural frequencies) of small oscillations. The two-term truncation
Zpp = Omn @n+ @imn ¢, yields a set of quadratically coupled differential equations,
which typically provide a second-order description of the nonlinear surface waves.
It is necessary to proceed to the three-term truncation displayed in (1.2) to determine
the amplitude dependence (which is quadratic in this approximation) of the resonant
frequencies.

This formulation for a homogeneous fluid may be extended to a stratified fluid that
is modelled by a sequence of N layers, in each of which the density is constant. A
flow started from rest then is irrotational, and a velocity potential exists, within each
layer [the overall flow is rotational, with the vorticity being concentrated at the
interfaces; cf. Lamb 1932, §231]. In §2, I express the Lagrangian for such a layer
as a functional of the velocity potential ¢, and the displacements of the upper and
lower boundaries (which may be rigid or free surfaces or interfaces with adjacent
layers) 9, where the subscript + signifies upper/lower. In §3, 1 posit the Fourier
expansions 9, = g () ¥,(x) and a corresponding expansion of ¢ and determine the
coefficients in the latter expansion in terms of ¢ and ¢& through the requirement
that the Lagrangian be stationary with respect to variations of ¢. The Lagrangian
for a single layer then may be placed in the form pSL(q,.4,,q9_,4_;d), wherein d
and S are respectively the thickness and area of the undisturbed layer. The
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corresponding Lagrangian for an N-layer fluid in which the density, thickness and
generalized coordinates of the upper and lower boundaries of the vth layer are p,, d,,
g, and g,_,, respectively, is given by

N
"g = S ?1 pv Ll(qy’quv—l’QV—l‘ dv)’ (13)

It is worth emphasizing that (1.3) does not require the Boussinesq approximation,
although this approximation is subsequently invoked in some of the examples and
in the limiting case of continuous stratification.

The configuration of a single interface with rigid boundaries (the simplest,
non-trivial two-layer problem) is obtained by setting ¥ =2, ¢, =¢,=0, ¢, = ¢,
pra=pz and d, ,=d;. I consider three-dimensional standing and progressive
waves for this configuration in §§4 and 5, respectively, and reproduce the two-
dimensional results of Hunt (1961) and Thorpe (1968a. b) after allowing for (what
appear to be) typographical errors therein. Explicit, three-dimensional examples are
straightforward in principle but algebraically complicated.

I originally undertook the present investigation in connection with the conjecture
of Mahony & Smith (1972) that a spatial resonance might occur between surface and
internal waves of comparable wavenumbers £ and 2k respectively, and disparate
natural frequencies, w, and w;, where (w;/wg)* = O(¢) and € is a measure of the
stratification. It turns out, however, that the coupling between these two modes is
O(¢), rather than O(1) as in Mahony & Smith’s model problem of spatial resonance
between aerial and surface waves, and the putative resonance is either impossible or
realized only at higher order (in which case it presumably would be of limited
geophysical interest). I therefore have relegated this particular application to the
Appendix.

The Lagrangian for a continuously stratified fluid, in which (x, %, t) = ¢, (%, ) ¥ ,(x)
and g is a Lagrangian (rather than an Eulerian) coordinate, may be obtained by
setting d, = 0, y = vd, p, = p(y), and D = N§ in (1.3) and then letting 6|0 with D
fixed. I carry out this limit in §6 for a Boussinesq fluid (in which the inertial effects
of stratification are neglected), apply the result to progressive waves, and obtain
second-order approximations to 5 and the dispersion relation for any density profile
for which the (linear) vertical structure problem can be solved. Considering the
particular cases of finite depth with a linear density profile and infinite depth with
a hyperbolic tangent density profile, I obtain Thorpe’s (1968b) approximations to 7
and the corresponding dispersion relations (which appear to be new).

It should be emphasized that, although the Lagrangian formulation appreciably
simplifies the algebra for standing- and progressive-wave problems in which the time
dependence is harmonic, it is most valuable in attacking problems of stability and
chaotic motion in which a basic harmonic time dependence is slowly modulated, with
the typical representation

g,(t) = a, (1) cosnwt+b, (1) sin nwt, (1.4)

where 7 is a slow time. Averaging the Lagrangian over the fast period 2n/w then
leads, through the invocation of Hamilton’s principle, to a set of evolution equations
for the a, and b,. Examples are parametrically excited solitary waves in a long
channel (Miles 1984a), forced, internally resonant surface waves in a circular cylinder
(Miles 1984b), and stratified shear flow over a sinusoidal bottom (Miles 1986).
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2. Lagrangian for single layer

We consider the irrotational motion of a layer of incompressible fluid that is
bounded laterally by a rigid cylinder of cross-section 8 and above and below by the
interfaces y = ¥d+7,(x,t) and y = —ld+7_(x,t), where x and y are horizontal and
vertical coordinates. The Lagrangian for this motion may be posed in the form (Luke
1967; Whitham 1974, pp. 435-6)

2 =[[as [ pay W, =xia+ny) @.1)

where p is the pressure and, here and subsequently, the alternative signs are
vertically ordered. Invoking the assumptions of incompressibility and irrotationality,
we have

P =py,—p(P,+1Ve Vo +gy), (2.2)

where p, is the (static) equilibrium pressure at y = 0, p is the density, ¢(x,y,?) is a
velocity potential (velocity = V¢) that satisfies

Vig =0 (2.3)
and n'V¢ =0 onds, (2.4)

and ¢, = 0¢ /0t = 0, ¢. We also impose the constraint

Ijn+ ds = Ij?}_ d8 =0. (2.5)

Conservation of volume implies only that these last two integrals are equal, but we

ultimately assume that 4 = 0 at the lower boundary of an N-layered fluid, by virtue

of which (2.5) holds at each of the interfaces. If the lower boundary is rigid but of

variable relief, the origin of y may be chosen to make the mean value of 5 vanish.
Substituting (2.2) into (2.1) and invoking (2.5) and the identities

Y Yy
[ gy =a,[ " gay—@nze @6)
y- y-
Y
and [Jas[" wgray = [[w6,~vr-venias, @)
which follows from Green’s theorem, (2.3) and (2.4), we transform (2.1) to
L =pSL+2P, P =p,Sd—pd, Ijjy+¢dey, (2.8a, b)
y_
where 1= 5 {[(6n.— 166, ~Vn' 99 gt ds. 29)

The functional £ makes no contribution to the variation of the action, _[.? dt, and
therefore is of no further interest. The remaining Lagrangian, pSL, is a functional
of ¢, n, and 7_.
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3. Fourier expansion
We now posit the Fourier expansions

Ny = g () Yu(x), (3.1)

where, here and subsequently except as noted, the repeated index n is summed over
the Fourier spectrum, and {y,} is the complete orthogonal set determined by

(V2*+k¥)y,=0, nViy,=0 onoas, J:[:ﬁm Y,d8=6,,8 (3.2a,b,c)

for k£ = k,,. We posit the corresponding expansion for the velocity potential in the
form

+(t) cosh k,(y+1d) + $5(t) cosh k,(y—3d
¢=[¢n(t) cos ,.(y+02031-1i-k¢,,d(t) cosh k,(y—1 )]tﬁ,,(x). 53)

It follows from (2.5) that g& = 0, where ¥, = 1 is the constant member of the set
{y,.}, but it does not follow that ¢F = 0 (cf. I, §5).

Substituting (3.1) and (3.3) into (2.9), expanding ¢ about y = ¥, , and carrying out
the integrations with respect to x, we obtain the quartic approximation

L = 8pnl(@h =8 dm) 5+ (S & — dm) 92 —39(0 44 — G 02)
— 1, (Bh, B3+ 28, 8 b7+ B S+ £, Comaldf 0 85+ 05 G 67)
+342 Coimnla) @7 (B3 + 80 67)— 45 @1 G (Sn 5+ 83)]
— A1 8 — Dimn S Sn @t +¥5mn G 61 67 97,
~H—£imn G +Dimn S Sn il + ¥ jimn GG )19 5
—32Dy (S 6 =80 81) + i jimnaSm @ 4 + 50 G 019 $7 (3.4)

where (the summation convention does not apply in any of (3.5a)—(3.8b)

Cumn = 8 [V ¥n¥0dS, Cpmn =57 [[W)t¥nvnds,  @5a.0)

Dinn =87 [0, 9090408, Dya =5 [[9,9, W0V 88, @60,0

£,=k,tanhk,d=1/a,, S, =sechk,d, (3.7a, b)
£imn = Cimn€mZn+ Dipa, (3.8a)
ljlmn = lemn(kgnln'i'k:’{m)'l'(’{m'l"{n) Dﬂﬂ”;’ (3-8b)

and the various coefficients have been simplified with the aid of the identities given
inI(A8,9).

The requirement (Hamilton’s principle) that L be stationary with respect to
independent variations of the ¢i yields a set of equations that may be solved for

£ in terms of the ¢f and ¢ by iteration, starting from the first approximation
£, 9 =+ ¢% (n not summed). Moreover, the error in L is of the order of the square
of the error in ¢ by virtue of stationarity; accordingly, it suffices for the quartic
approximation to L to have the quadratic approximation to ¢X, which is found to
be

f=antiE—rE), 1 =DippnangtGE—S,4¢%) (nnotsummed). (3.9a,0)
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The substitution of (3.9) into (3.4), followed by quartic truncation, yields (after
extensive manipulation)

L=1L(9:4+.9--9-39) = ¥mal2n(dh 67— 28, 45 §n + Gm §n) — 9@ 97— I In)]
+1Cimnlq] Gm G — Ot G G)
—3Dimn m @€ G — S Gm) (G =S §2) = @0 (G = S Gm) (G —Sn d2)1+ Lo,
(3.10a)
wherein ¢, = {gx}, the functional L, is defined as in (1.3), and

L,=30 e rhri 428, rhr +ryry)

+%lemn kgn a’m[q; q?-(Sn q;-,, q;_Sm Im q:;)"'qj_ ql_(Sn Im q-rt_Sm q; q;)]
_%Dylmn(a’m*'a’n)[q?q?-(q:n_sm q;n)q:;'*'qg_ql_(q.r_n_smq:n)Q;L] (310b)

comprises the quartic terms. We remark that, in many problems for which a quartic
approximation to L is required, only a single mode need be retained in the calculation
of L,; see e.g. (4.8) below.

The surface-wave formulation of I for a single layer is recovered by setting ¢, = 0
(level bottom), which implies ¢, = 0.

4. Interfacial waves

The configuration of a single interface with rigid boundaries (the simplest,
non-trivial two-layer problem) is obtained by setting N=2, ¢,=¢,=0, q, =g¢,
pr:=ps and d; , =d; (where the mnemonic subscript + now designates the
upper/lower layer) in (1.3), which then reduces to

& =S8[p_L,(4.4,0,0;d_)+p, L,(0,0,9,4:d,)]. (4.1)
Combining (4.1) with (3.10), we obtain [cf. (1.1), (1.2)]

L = %P: S[(amn ant @pnQ +‘Ll'a/jlmn q; QI) Gm n _amn Ay w%t I qn]’ (4.2)

where the reference density p, is arbitrary,

_ P4 a;+p_a; a _P_Cmn— Py a’;-mn _ P+ a’;-lmn+p—”’j_lmn
n = ’ imn = s Ajimn = ’
Px P Px
(4.3a, b, ¢)
af is given by (3.7a) with d = d, therein,
alimn = Clmn_Dlmn a’rjr:z a/%, a’jil-mn = 2Djmi Dlni a’ii a’rﬁ a/% _Djlmn(arjr:r.“i'arjz:)’
(4.4a,d)

the summation convention does not apply in (4.3) and (4.4), Cy, Dypn> Ciymy, and
Dj;,nr are given by (3.5) and (3.6), and

W = (o_—pL)g

" prantp_ay

(4.5)

The linear approximation (cf. Lamb 1932, §231), which follows from the quadratic
approximation to %, yields uncoupled oscillations (the normal modes) with the
frequencies w,. Now suppose that ¢, = ¢,, 4, coswt and w = v, describe the first
approximation to the nonlinear oscillations governed by (4.2) for a particular mode
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(» = 1 need not imply the dominant mode). Then, proceeding as in I, §6, we seek
a second approximation in the form

g, =06, 4, coswt+A,,+A4,, cos2uwt, (4.6)

where A,,, A,, = O(A%}). Substituting (4.6) into (4.2), averaging % over the period
2n/w, requiring the average Lagrangian (¥ to be stationary with respect to each
of 4,, 4,,and A4,, and approximating w by w, except in the term w?—w?, we obtain

Ay = 1(%> 42, A, = —1(M> A? (nnot summed) (4.7a, b)

4 ! 4 4a’n_a’l
w 2 l A 2 a (4@ —a )2

wd () =g (S) [T e e 49)
1 1 n 1

where w? is given by (4.5).

The results (4.7) and (4.8) are valid for three-dimensional (two-dimensional on the
interface) waves in any container for which the normal mode problem (3.2) can be
solved ; however, the algebra for specific three-dimensional problemsis quite involved,
and we therefore consider as examples only two-dimensional waves in a basin of
length nt/k, for which

Uo=2cosk,x, k,=nk (n=1,2,...). (4.9a, b)

We then find that only those terms for which » = 2 in (4.7) and (4.8) make non-zero
contributions (since C,,,, = 0 for » # 2). Replacing 4, by 4/+/2, choosing p, =p,,
introducing

e=P="P+ (4.10)
Py

and letting ¢} 0 (the Boussinesq approximation), we obtain

o _ EgkT, T_ _
w? —T++T_ (T, =tanhkd,), (4.11)
T,—-T
n = A coswt coskx+1kA* ™ (T, T_ + 3 cos 2uwt) cos 2kzx, (4.12)
+ p—

and

2 —_ 2 __ —_
(w) g A2[9(T+ T y2—2T, T (3T 4T+T_+3TE)]’ 0.13)

o, 3273 T°

W,

which are equivalent to Thorpe’s (1968a) results. The approximation (4.12) fails if
d, = d_, in which case the amplitude of the second harmonic is O(ekA4?).

5. Progressive waves

We now suppose that the fluid is laterally unbounded (or, more precisely, of lateral
dimensions large compared with 1/k), replace the eigenfunctions of (3.2) by

wn = eikn'x, g[fﬁ = g[f: = e_ikn'x, (5.1a, b)

where the asterisk signifies complex-conjugation, and extend the summationsin (3.1)
and (3.3) over both ¢, and ¢, with g; = ¢} and k, = |k,|. The spatial average of
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L/p (after discarding the counterpart of £) then is given by (3.10) with the correlation
coefficients therein replaced by

5. = (1) for ke +ky 0, (5.2)

1 1 =
Cima = forkitknth, 0. Cypo= forky+ki+k,+k, 0, (5.3a,b)

Dlmn = _Clmn km.kn’ Djlmn = -Cjzmn km'k”, (5.4a, b)

and D,,,, replaced by D, in (3.9b).

Considering, for example, the two-layer configuration of §4 and a progressive wave
for which

Y, =" (n=1+1,+2..) (5.5)

and ¢, = A, exp(—iwt) and w = w, (4.5) describe the first approximation, we posit
the counterpart of (4.6) in the form

Q= A, o711t (n=+1, +2). (5.6)

The Lagrangian retains the form (4.2), with D, , replaced by D,,; in (4.4b).
Substituting (5.6) into (4.2) and invoking (5.2)-(5.4), which imply «,,,,, = 0 unless
l+m+n=0and a;,,, =0 unless j+1+m+n =0, we obtaint

L= (pu8)'E = a,(0®—0}) 4, A} +a,(40* —0]) 4, A}
+ (2“115_%"’511) ‘1’2(‘42 A; + AI‘” Az) +é(a1i1i + 2111 — @ i) “’2‘4% Ai"”- (6.7)

Requiring & to be stationary with respect to independent variations of Af and A7,
approximating by w, except in the term w? —w?, and solving the resulting equations
for 4, and w?, we obtain

-1 M) 2

4y =—5 ta,—a, ) (5.8)
o\ _ L [@ens—aan) <allii_a’1i1i_a’1ii1)] 2

and <wl) - 1+|:2dl(4a2—a1)+ al 4, (5.9)

as the counterparts of (4.7) and (4.8). Evaluating the coefficients through (4.3), (4.4),
(5.3) and (5.4), replacing A, by 14, invoking (4.10), and letting €| 0, we obtain

T.-T
= —_ 3L 42 (= = _
7 = A cos (kx—wt)+3kA <T1T2_)COS2(kx wt) (5.10)
ON _ e [ _1<L_ 1 L) gm—mz]
and <w1> =1+k2A4%(1 2\72 T+T_+T'i +8 T (5.11)

which are in agreement with the results of Hunt (1961) and Thorpe (1968b) after
correcting typographical errors therein.} It is worth noting that (5.8) and (5.9) do
not rest on the Boussinesq approximation whereas (5.10) and (5.11) do.

t Note that (5.7) is automatically the temporal average of the Lagrangian for a simple
progressive wave but that it would be necessary to average over the period 2n/w if the amplitudes
were slowly varying functions of # and ¢ (cf. Simmons 1969).

I The sign of ma, should be reversed in Hunt’s expression for ¢? (p. 525). (3—7T3)? and (3—T})*
should be replaced by (3—7'3) and (3—7%) in Thorpe’s (2.1.2), (3—T?) and (p, +p,) should be
replaced by (83— 7%)% and (p, +p,)? in his (2.1.6), and 87, should be replaced by 87'? in his (2.1.7).
Dr Thorpe agrees with these corrections.
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6. Continuous stratification
We obtain the Lagrangian for a continuously stratified fluid, in which

(X, #:8) = Quy, ) Yu(), (6.1)
by setting d, = d, y = vd and D = Nd in (1.3) and then letting d {0 with D fixed:
D/a
Z=8 1;?3 X p 19,4, 4-14,-1:9). (6.2)

The Boussinesq approximation implies p, & constant = p,, except in the potential-
energy term, which transforms according to

N D D
El pv(qf—qﬁ_l)—>L ply) (04 /0y)dy = —L P (y)q*dy +(pq*)p, (6.3)

wherein g appears as a Lagrangian coordinatet, p” = dp/dg, the subscript D implies
evaluation at the upper boundary, and we have assumed ¢ =0 at the lower
boundary. Transforming the remaining terms in (3.10) with the aid of the limits

a,—>@dk2)yt=d7A%, S,->1-—1d%2, (6.4a,b)
_ 0 ,
q;_qn_)dai; = dqm (6.5)
and introducing Ne=—gp'/p (6.6)

for the square of the buoyancy frequency (N no longer appears as an index), we
obtain

1 D o/ 4 . .
L= 0482 = 5 | Bnanddndat lnda— Nt

— Dy (A% A%, 41 G G + 205 014 4) + 2L, 1Ay
+%(_gamn qmqn+01mn qldm q.n)D’ (6.7)
Ly = {Dyps D[ A3 (AL, @5 G+ 4 Gm) (A2 @140+ 21 Gn) AR AL 454, Gom Gn)
_Jz'Djlmn(’\fn + '\3:) [(qj ql qm)lq;l + k?n qj ql q.m qn]} (68)
The partially integrated terms may be neglected for the internal waves, for which
¢, =0 at y = D. [It can be shown that the equations of motion implied by (6.7)
through Hamilton’s principle are equivalent, after Fourier inversion, to Phillips’s
(1977) equation (5.2.4). It follows from this equivalence that the assumption of
irrotationality in the individual layers of the layered model of a continuously
stratified fluid does not impose any qualitative restriction on the rotational solutions

in the continuous fluid, at least in the absence of non-conservative body forces.]
Consider, for example, a two-dimensional progressive wave for which the i, are

givenby (5.5)and (. — @ (4)e ™ (n not summed). (6.9)

The complex amplitudes may be expanded in the eigenfunctions of the linear
problem, f,, .., according to

Qn(y) = Amnfmn(y) (n not summed), (6.10)

+ Milder (1982) designates the equivalent of  as an ‘iso-pycnal’ coordinate in his Lagrangian
formulation for a continuously stratified fluid.

17 FLM 172
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where the f,,,, are determined by the Sturm-Liouville problem

2

f',',m+kf,< 1:7 - l)f,,m =0 (m,n not summed), (6.11a)
wmﬂ

fan=0 (y=0,D), (6.11b)

and are orthogonal and normalized according to

Lsznfm,,N?dy =8my, ¢ = LD Ndy = g[&;f’_(’ﬂ]_ (6.12a, b)

%*

The natural frequencies w,,, are the eigenvalues for prescribed &, = nk (cf. Phillips
1977, §5.2). We also note that

Do bimt’
[ O fin Srunon S oy = 2L 6.13)
0 mn

Substituting (6.9) into (6.7), choosing 4,,, = 4,,, 4,, truncating the expansion in the
¥, at » =2, as in §5, and invoking the orthogonality relations (6.12) and (6.13), we
obtain

L= a,(0®*—w}) 4, AT+ 2 g, (40 —wh,) Ay Ar,
t @y A} Ay + AT A,,) Hiayy,, 024F AR, (6.14)

’ ’

g g

where @y = w—f’ Ay = ot (6.15a)
3 D ’ ’
arme=—3 | WFE=SD mady. (6.15b)
0
D ’
2311 = 2L (A3 f1=3f1f2 -2k f}) dy, (6.15¢)

and f, = f,,. Requiring L to be stationary with respect to independent variations of
AY¥ and A4f, as in §5, we obtain

A4 .= _<ﬂ2_) A2 (6.16)
m2 4dm2—dl 1
w\? 242 a
and <—) = 1+[ um2___ 1111] 4,3 6.17
W, 2 (dap,—a,) 2, 14 ( )

which provide the quadratic approximations to 4 and the dispersion relation for any
density profile for which the (linear) vertical structure problem (6.11) can be solved.
Turning to the special case of constant N%, for which

_7 — own(My\ o, ___ N

N = D Smn =2 sm( ) ), w?,, 5 (m0/mE (6.18a, b, ¢)

where 0= % (6.19)
2

we have a,=146%)D, a,,= [1 +<m70) ]D, (6.20a, b)

@pime = —3.27M8, (02 +1), ayy,, = 3EED(O2+1)(62—2).  (6.20¢, d)



Weakly nonlinear waves in a stratified fluid 509

Substituting (6.20) into (6.16) and (6.17), introducing 4 = 2i4,, and invoking (5.1),
(6.9) and (6.10), we obtain

— — ot gin(™) 11, 42 —ol) si (2n_?>
7 = A cos (kx —wt) sm( D>+41|: D cos 2(kx — wt) sin D (6.21)
2
and (wﬁ) =1 +3k2A42. (6.22)
1

The approximation (6.21) is equivalent to Thorpe’s (19685) equation (3.3.4) if his
Js = 0 and his z is replaced by his z,t, which is equivalent to the present Lagrangian
coordinate g. The approximation (6.22), which appears to be new, presumably owes
its simplicity (in particular, its independence of D) to the uniformity of N; cf. (6.25)
below.

The corresponding results for the dominant mode of the profile

1y 2(2) _
N2—2hsech b (—o0 <y <) (6.23)

(the origin of g having been shifted) are

- ) —ot)—1 3") z( z)" ¥ _
n—A(sechh> cos (kx—wt) 2(3K+2 kA sechh tanhhcos2(kx wt), (6.24)

which is equivalent to Thorpe’s (1968b) equation (3.3.21) if his f; = 0 and his z is
interpreted as above, and

w\* . _ (122 +17x+3) I'(k+3) I'(2x)
(‘”_1> =14+C(k) k242, C= B +2) T ) T2K+D) (6.25a, b)
where K =kh, o= (K: 1)(37;) (6.26a, b)

The coefficient C increases from } at « =0 through a rather flat maximum
(0.730 < € < 0.736 for 0.94 < « < 3.65) and then decreases to an asymptote of 27
as k4 co. We remark that the limit x| 0 in (6.24) and (6.25) corresponds to the limit
k., h_t o0 in (5.10) and (5.11).

It should be remarked that the Boussinesq approximation renders the formulation
in this section inapplicable to very long, nonlinear (e.g. cnoidal or solitary) waves;
cf. Long (1965) and Benjamin (1966). It also implies non-uniform validity in a very
deep fluid in which the cumulative density change, albeit gradual, is substantial ; cf.
Drazin (1969).

This work was supported in part by the Physical Oceanography Division, National
Science Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research
under Contract N00014-84-K-0137, NR 062-318 (430).

t+ Dr Thorpe (personal communication) informs me that the substitution z—> z, is implicit in his
(3.3.4) and (3.3.21).

17-2
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Appendix. Coupling between surface and internal waves

We now suppose that the upper surface of the two-layer fluid is free, so that (4.1)
is replaced by

S p_L\q,,4,,0,0;d_)+p, L(q,5, 9, 9:,4::44), (A1)

where g, , = {g}%} is the generalized coordinate (matrix) of the interface/free surface.
It is expedient to introduce normal modes through the transformation

G=qntendn €5 =an—ndn (A 2a, b)
where ¢} are the normal coordinates of the internal/surface waves, € is defined by
(4.10) (with p, = p,), and the summation convention applies (in this Appendix) only
in (A 5). The form of (A 2) ensures the absence of quadratic coupling terms (of the

form ¢i,¢5) in the potential energy. Invoking the corresponding condition (the
absence of ¢i, ¢5) for the kinetic energy, we find that ¢, must satisfy

1—-e)a+(1 -
ecf,+|:( e)a§++a(+ +€)a,{|0n—1 =0, (A 3)
n@n

where 2f and 8% are defined by (3.7) for the upper/lower layer, and (as required
by the anticipated roles of ¢!, and ¢5) that root of (A 3) that is O(1) as €0 (the
Boussinesq limit) is to be selected (see below). The quadratic component of the
Lagrangian then reduces to

¥mal-- 1= 3251(65)° — (05, 651+ 3anl () — (03, 43)%), (A4)
where (cf. Lamb 1932, §231)

a

a5 = (1—2¢, 8+ %) at+(1+¢) & ay, (A 5a)
L= (1426c, St+et) al+(1+€) ay, (A 5b)

@) = (1+ec) L, (wh)? = e(l+6ct) 2. (A Ba, b)
d" an
Letting €40 in (A 3), (A 5) and (A 6), we obtain

N St a} _ sinhk,d_ s, 1
Tt ¥a, sinhk,d’ “" k,tanhk,d’

whereind =d, +d_, and

a,~>a}+a,, (ATa b, c)

egky
cothk,d, +cothk,d_’

which correspond to surface waves in water of depth d and interfacial waves in an
enclosure with a rigid upper boundary (as in §4).

We now address the problem of two-dimensional, nonlinear coupling between a
surface wave of wavenumber k and an internal wave of wavenumber 2k, for which
the ¥, are given by (4.9) and

(0$)*—>gk, tanhk,d, (0!)*~

n

(A 8a, d)

g5 =0 qin = 03,9, (A 9a,b)

Mahony & Smith (1972) have conjectured that quadratic coupling (cubic coupling
in the Lagrangian) between these two modes could induce a resonant excitation of
the slow mode through heterodyning between the fast mode, externally driven at a
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frequency w = of, and its sidebands at w+ o, where o = wi. (The second harmonic
of the surface wave at wavenumber 2k will also be quadratically excited, but this
component of the full solution has no effect on the internal wave in the present
approximation.)

Substituting (3.10a) into (A 1) and invoking (4.9), (A 4) and (A 9), we obtain

L = }a3[¢}— (o5 ¢,)*1+ %“;[qg - (wé 91+ 241,04, 42+ 3205, 063+ Ly, (A 10)
where the coefficients of the quadratic terms are given by (A 5) and (A 6),
@115 = @19y = €0 15(c} — ¢3) + Diyplaf af[(1—c, 87) (€c,+87)
+o(e; =81 +ec, SH— (1 +€) 2y a5 <3}, (4 11a)
@911 = 60112(”% —cg)+ Dzn{“f[(cl - Sf)z tecy,(1—¢ ST)’] —(1+e) ”’1_2 cf}, (A 11b)

and the quartic component L, is implicitly determined by (3.94), (3.10b), and
(A 9a, b). It follows from (A 11) (after considerable algebraic reduction) that «,,, and
a,,, are O(¢) and therefore negligible in the Boussinesq approximation, in which O(e)
is retained only in !, (A 8b). It also can be shown that 2,,, and z,,, vanish in the
limit of a deep lower layer (kd_+ o0). It therefore appears that the putative resonance
between the surface and internal waves is realized only at higher order if at all.t
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